ESD-TR-66~6L1
ESTI FILE COFY

. ESD-TR-66-644 MTR-268

€00 RTIGH0 S } o
RE VKR YO . | \
\NTEIC & TG . RECRYATION DRI
L B e

A USER'S GUIDE TO THE ADAM SYSTEM
E£SD ACCESSION 113

7
f S/ C
ESTiCalii o A) & 88909

DECEMBER 1967 Copy No. { of Y

cys

ADAM Project Staff

Prepared for
DEPUTY FOR COMMAND SYSTEMS
COMPUTER AND DISPLAY DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 502F
Prepared by

This decument has beer: appraved for public THE MITRE CORPORATION
relecse and sale; its distribution is un-

Bedford, Massachusetts
fimited.

Contract AF19(628)-5165

AD664337

When U.S. Government drawings, specifica-
tions, or other doto are used for ony purpose
other than a definitzly related government
procurement operoticn, the government there-
by incurs no responsibility nor ony obligotian
whotsoever; ond the foct thot the government
may hove formulated, furnished, or in any
woy supplied the said drawirgs, specifica-
tions, or other data is not to be regarded by
implicotion or otlerwise, os in ony monner
licensing the holder or ony other person or
corporotion, or conveying any rights or per-
mission ta monufocture, use, or sell ony
patented invention that may in any way be
related thereto.

Do not return this copy. Retain or destray.

ESD-TR-66-644

MTR-268

A USER'S GUIDE TO THE ADAM SYSTEM

DECEMBER 1967

ADAM Project Staff

Prepared for
DEPUTY FOR COMMAND SYSTEMS
COMPUTER AND DISPLAY DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been appraved for public
release ond sole; its distribution is un-
limited.

Project 502F
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

FOREWORD

The work reported in this document was performed by The MITRE
Corporation, Bedford, Massachusetts, for the Deputy for Command Systems,
Computer and Display Division, Electronic Systems Division, of the Air
Force Systems Command under Contract AF19(628)-5165.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

v

CHARLES A. LAUSTRUPY, Colonel, USAF
Chief, Computer and Display Division

ii

ABSTRACT

This report describes the kinds of capabilities
available in the ADAM system and the way in which they
are used. The processes for creating and maintaining a
data base, specifying formats, modifying the form of the
input, and specifying procedures are described. The
FABLE, IFGL, and DAMSEL languages are also described.

iii

TABLE OF CONTENTS

SECTION 1 INTRODUCTION
SECTION II FABLE
BASIC QUERY STRUCTURE OF
FILE PROCESSING STATEMENTS
'For' Part
Boolean
Output Part
BOOLEAN IN DETAIL
Operands in Boolean Primaries
Property Names
Complex Boolean Primaries
Action Phrases
OUTPUT PART OF FILE PROCESSING
STATEMENTS IN DETAIL
Titles and Formats
Repeating Groups
New Properties
ALL
Null Output Files
LOOPING IN FILE PROCESSING
STATEMENTS
Loops
Global Rule

'For' Clauses

Page No,

© oo 00 9 a9 o

11

15

15
16
16
16
17

17

17
18
18

TABLE OF CONTENTS (Continued)

SECTION II (Cont.) TALLYING WITH FABLE STATEMENTS
General Description
Detailed Discussion
USING FABLE TO EXAMINE OR MODIFY
ROLLS
Specifying a Roll
Retrieving Contents of a Roll
Modifying a Roll
OPERATING ROUTINES WITH FABLE
STATEMENTS

Requirements for Routines Which
May be Operated Through
FABLE statements
References to Routines in FABLE
SORTING A FILE
SECTION I FILE GENERATION LANGUAGE AND
PROCEDURES
GENERAL CHARACTERISTICS
Source of Input
Data Fields
Names
Data Modifications
File Classification
Logical Rolls
Protection
Format
Legality Checks

vi

Page No.

19
19
20

22

22
23
24

25

26
29

32

33
33
33
34
34
34
34
35
35
35

TABLE OF CONTENTS (Continued)

Page No.
SECTION III (Cont.) INITIAL FILE GENERATION
LANGUAGE DECK 36
Preparation 36
Notation 36
FILE DESCRIPTION 38
Syntax 38
Discussion 39
PROPERTY DESCRIPTION 43
Logical Property Description 43
Numeric Property Description 45
Raw Property Description 47

Repeating Group Property Description 48

Sequence Check 49
FIELD DESCRIPTION 50
Position 50
Length Description 53

Set Sequence Counter Command 54
CONVERT DESCRIPTION 55
Syntax 55
Discussion 55
SECTION 1V DAMSEL 59
GENERAL CHARACTERISTICS 59
System Names 59
System Specifiers 60
Variables and Type Specifiers 61

Card Format 62

System Defined Variables 63

vii

TABLE OF CONTENTS (Continued)

Page No,

SECTION IV (Cont.) DAMSEL DECLARATIONS 66
Routine Declaration 67

Table Declaration 68
Parameter Declaration 69

Entry Declaration 69
Variable Declaration 71

Tail Declaration 72

Begin Globals Declaration 72

End Globals Declaration 73

End Declaration 3

DATA MANIPULATION STATEMENTS 73
File Processing Statements 74

Area Statements 80

File Generation Statements 82

DATA TRANSMISSION STATEMENTS 82
Block Designators 83

Fetch Statements 84

Store Statements 85
ASSIGNMENT STATEMENT 85
Variables 86
Constants 88

Simple Assignment Statements 93
Assignment Vectors 96

Compound Assignment Statements 97

Generalized Assignment
Statements 98

viii

TABLE OF CONTENTS (Continued)

SECTION IV (Cont.) BRANCH STATEMENTS

Unconditional Branch Statements
Conditional Branch Statement
Entry Branch Statement
Enter Statement
Exit Statement
ROUTINES AND FUNCTIONS
Call Statement
Function Reference
DO Statement
DATA STATEMENTS
Real Data Statement
Integer Data Statement
Roll Data Statement
Location Data Statement
Spring Data Statement
Switch Data Statement
SECTION V STRING SUBSTITUTION
DEVICE DEPENDENCY
OPERATION
Scan Option
Rescan Option
PARAMETERS
Insert Option

Reinsert Option

Page No.
98

98

99
100
100
100
101
101
103
104
104
105
105
106
106
107
107
108
109
109
110
111
112
114
115

SECTION V (Cont.)

SECTION VI

TABLE OF CONTENTS (Continued)

CAUTIONS

Messages Not Subject
to Substitution

Punctuation and Separation

DEFINITION AND SYNTAX

String Substitution Definition

Removing String Substitutions

SUBTABLE FILE

OUTPUT FORMATTING
BASIC PRINCIPLES

An Example

Which File

Output Devices

Printed vs Display Output
Next Field

Next Object

Next Property

CATEGORIES OF OPERATORS

Print Operators

Spacing Operators

Display Operators
Iteration-Control Operators
Mode-Setting Operators
Margin-Definition Operators
Special Routines
Miscellaneous Operators

Macro-Control Operators
X

Page No,

120
121
121
122
122
123
123
123

TABLE OF CONTENTS (Continued)

Page No.
SECTION VI (Cont.) FORMAT TYPES - COL, ROW, AND RAW 127

FIELD DEFINITION AND FIELD OVERFLOW 128

Deleted Names and Values 129
Variable Width 129
Floating Point Property Values 130
Field Underflow 131
Field Overflow 131
Right-Margin Overflow 132
MARGINS, PAGINATION, AND HEADINGS 132
Margins 132
Pagination 133
Headings 134
Page Numbers and Classification-
Implied Top Margin 135
FILE DATA 135
Objects and Properties 135
Standard Properties 135
Repeating Groups 136
Alignment of Repetitions 136
Repeating Group Stepping 139
MACRO AIDS 140
Begins and End 140
Labeling or Tagging 141

STRAP or SMAC Code Intermixed 141

Xi

SECTION VI (Cont.)

SECTION VII

TABLE OF CONTENTS (Continued)

SOME EXAMPLES
Example of Column Format - SF1
Example of Raw Format
Example of Row Format
WRITING ROUTINES
ADAM ROUTINES
STANDARD BINARY DECKS
Roll Data Subdeck
Routine Data Subdeck
ROUTINE FILE
ROUTINE FILE UPDATING (RUE)
Delete Options
Add Option
Correct Option
ROUTINE LOADING (CLOD)
Fixed Routine lLoading
Allocatable Routine Loading
Allocatable Routine Dismissal
General Release

SYSTEM CONVENTIONS FOR
ADAM ROUTINES

Conventions for Called Routine
Conventions for Calling a Routine

Specifying Roll Data for Standard
Binary Decks

References to Data

xii

Page No.
142

142
145
147
149
149

154
154
156

157
159

APPENDIX I

APPENDIX II
APPENDIX III
APPENDIX IV
APPENDIX V

APPENDIX VI
APPENDIX VII
APPENDIX VIII

APPENDIX IX

TABLE OF CONTENTS (Concluded)

Page No,
SECTION VII (Cont.) Consideration for Code Operated
in Autostacked Mode 164
SYSTEM CONVENTIONS FOR
FORTRAN ROUTINES 165
Preparation 165
Execution 166
Comfort List 166
Restrictions on FORTRAN Statements 167
Required Heading 168
FORTRAN Calls to DAMSEL Routines 169
DAMSEL Calls to FORTRAN Routines 170
Library Routines 172
SYNTAX OF FABLE 173
TWO SAMPLE FILES USED IN THE EXAMPLES 179
AN IFGL FILE DESCRIPTION EXAMPLE 180
SOME EXAMPLES 184
MESSAGES TO USER FROM STRING
SUBSTITUTION 190
FORMATTING OPERATORS 192
PAGE SIZES FOR VARIOUS DEVICES 220
OUTPUT FORMAT BY SPECIAL ROUTINES —
DO AND VC OPERATORS 222
LIGHTPENCIL INPUT STREAM 232
DESIGN FEATURES NOT IMPLEMENTED 235

APPENDIX X

xiii

SECTION I

INTRODUCTION

Since the first large command and management systems were built,
there has been an obvious need for a constantly improving capability to plan,
design, and evaluate command and management systems. This capability
must include the best available methods for generating alternative system
designs and precise techniques for rapidly evaluating existing, prototype,

or proposed system designs or design characteristics.

System designers must be provided with both improved operating infor-
mation processing concepts and improved techniques for use in design and
evaluation. These tools and techniques must be capable of rapidly reflecting

the latest technology, experimental proposals, and designs.

Similarly, systems to be produced for the field are requiring an ever-
increasing degree of flexibility not provided by conventional programming
technology. Lead times and reprogramming costs frequently exceed accep-
table limits. New techniques must be devised or refined and applied to

these problems.

The objectives of the ADAM project were to use, develop, and evaluate
advanced information-processing techniques for use in the system design and
implementation processes, and to make the means for realizing these tech-

niques in an experimental setting rapidly available.

In late 1962, The MITRE Corporation began designing the ADAM Sys-

tem* for the Electronic Systems Division, Air Force Systems Command.

*

The ADAM System is described in T. L. Connors, ADAM, A Generalized
Data Management System, The MITRE Corporation, MTP-29, April 1966.
This report should be read to provide background information.

1

The system became operational in early 1965, By 1966, ADAM was fully
developed to function as a tool for designers of data management systems
during the conceptual, design, and evaluation phases. ADAM allows a
system designer to build and operate a functional prototype of a proposed

system in a laboratory environment.

The ADAM System operates in real time with on-line inputs from a
number of users and a variety of devices, as well as off-line batched inputs.

It is implemented on the IBM 7030 in the Systems Design Laboratory.

ADAM is an example of a generalized data management system in
which as many user and system functions as possible were generalized,

including the following:
(1) translation of input messages independent of the language

(2) data base generation and maintenance independent of the

form or actual contents of the data

(3) creation, formatting, and presentation of outputs

independent of the particular formats or data
(4) dynamic allocation of computer storage resources
(5) input-output routing and handling for a variety of devices.

A user builds his particular system by specifying what the generalized
ADAM routines should do. The system description becomes a part of the data
base along with the data itself and hence the ADAM System is modified by

use of its file maintenance capability. Among the things which a user may
specify are:

(1) the language or languages he wishes to use

(2) his data base structure

(3) the formats of his reports
(4) special procedures specific to his application.

ADAM has more than one kind of user: The system designer uses
ADAM to build a prototype of all or part of his own system. The designer
may have programmers who program his specific calculations, and ultimate
users who communicate with the prototype itself. This report is directed
primarily to the system designer, but may be of interest to user programmers,

ultimate users, or those responsible for creating large system programs.

SECTION II

FABLE

FABLE is an input language available in the ADAM system. Messages
containing one or more FABLE statements may be entered into the ADAM

system for processing via any on-line device or off-line through card input.
There are FABLE statements for the following kinds of operations:
(1) Execution of a routine
(2) File processing

This includes creation of a file from existing files, deletion of
files, addition to file data, modification of file data, sorting of
entries and repetitions, tallying and summing of values, and

i retrieval and presentation of data.

Conditional phrases permit the user to select the data within a
file or files which qualify for the Specified file processing. A
single FABLE statement may perform several file processing
operations and reference data in several files, but only one
file may be modified and one file created. The user may
specify the format and output devices for the presentation of

retrieved data.
(3) Roll processing
Information in rolls may be retrieved and modified.

FABLE is the only available facility in the ADAM system for the on-
line specification of procedures other than file generation. The ability to

specify string substitutions (see Section V) enables a user to modify the form

of the language in which he communicates with the ADAM system, but the
result of string substitution must be valid statements in FABLE or IFGL,

the file generation language.

The ADAM system processes one FABLE message at a time. First,
the message is edited to remove control characters such as carriage returns
and backspaces. Then, it is edited to remove superfluous spaces and to
introduce a single space between each alphanumeric sequence of characters

and punctuation and between successive punctuation.

The ADAM translator scans the resulting message to analyze the syntax,
and, if it is sytactically correct, it is transformed into a sequence of
operations, along with values from the message, which are then

interpretively executed.

If a syntactic error is found, processing of the message is terminated
and the user receives an error message with some indication of the kind of
error, showing the remainder of the message as it appears after string sub-
stitution, beginning with the rightmost word scanned before the syntax

analysis failed.

The syntax of FABLE statements is given in Appendix I. Judicious
use of this information should permit a user to construct statements of the
correct forms. The meaning of those forms and what can be accomplished
with FABLE messages is described in the succeeding paragraphs of this
Section. The parts of the syntax which relate to any discussion are

referenced by the names assigned in Appendix I.

The examples in this section reference two files which are described
in Appendix II. Other examples of the use of FABLE may be found in the

following documents:.

C. Baum and L. Gorsch, Editors, Proceedings of the Second
Symposium on Computer-Centered Data Base Systems, SDC,
TM-2624/100/00, 1 December 1965, pp 3-87 to 3-121.

O. Beebe, B. Char, J. Penney, Implementation of ADAM-
AFLC Experiment — Phase I, MITRE, MTR-109,
24 January 1966,

O. Beebe, J. Penney, Implementation of ADAM-AFLC
Experiment — Phase II, MITRE, MTR-262, 15 July 1966.

BASIC QUERY STRUCTURE OF FILE PROCESSING STATEMENTS

FABLE queries generally consist of three parts: the 'for' part,
which names the file or objects to query; the 'Boolean’, which performs
actions and selects objects and repetitions for output; and the 'output' part,
which names properties to be printed. Either the Boolean or the output

part, but not both, may be omitted.
Example:

FOR AIRFIELD . IF ALT EQ LOGAN, PRINT LAT, LONG.
'For' Part

The 'for' part may name a file, a file and an object, or a file and a

list of objects. The file is called for 'for file'.
Example:

FOR AIRFIELD DOW.
FOR AIRFIELD DOW, REMY.

Boolean

Boolean Primaries

Booleans are constructed from basic components called Boolean
primaries (boolprm in the syntax in Appendix I). The simplest form of
a Boolean primary is property name, a relation, and a value, e.g.,

LAT EQ 70
The permissible relations are defined in the relation phrase of the syntax,

in Appendix I. Any relation may be preceded by NOT.

And, Or, and ()

The Boolean is made up of Boolean primaries connected by AND and
OR, with AND taking precedence.

LAT GR 70 AND ALT EQ LOGAN OR CITY EQ BOSTON
The grouping of the Boolean primaries may be altered by parentheses to
any number of levels. A series of Boolean primaries in parentheses is
also a Boolean primary.

LAT GR 70 AND (ALT EQ LOGAN OR CITY EQ BOSTON)
Not

A Boolean primary may be negated by preceding it with NOT.
NOT LAT GR 70 AND NOT (ALT EQ LOGAN OR CITY EQ BOSTON)
Output Part

Output File
The output from a FABLE query is placed in a new file with the objects

and repetitions taking the same names that they had in the 'for file'. The
output file may be produced on an output device, or saved, or both. The
device is indicated by OUTPUT followed by device names, or TYPE, DISPLAY,
or PRINT.

Examples:
OUTPUT P1 D1 ALT.
TYPE ALT, CITY.

Saving Output File

The output file may be saved by ending the output part with NAME and
the name to be given to the new file, e. g.,

PRINT ALT, CITY. NAME NEWFILE.
To save the file with no visible output use SAVE with NAME.

SAVE ALT, CITY. NAME NEWFILE.

Property List

The properties in the output file are named in the property list.
Properties in a repeating group must be grouped together.

ALT, LENGTH, WIDTH, COLOR, NUMBER

BOOLEAN IN DETAIL

Operands in Boolean Primaries

Matching Operands

The operands on each side of a relation must be of the same type,

either logical or arithmetic; the operands may not be raw.

Logical Operands

Only EQ or NOT EQ, or their equivalents, may be used with logical
operands. The operands must use the same roll. The left-hand operand
may be either a property name or a logical function; if the left-hand operand
is a property name, the right-hand operand may be a property name, a value,

or a logical function.

Examples:
ALT EQ OBJECT NAME
COLOR EQ GREEN
COLOR NOT EQ LOGICFN (OBJECT NAME, ALT)
If the left-hand operand is a function, the right-hand operand may be a property

name or a function.

Arithmetic Operands

Each operand may be an arithmetic expression. An arithmetic expres-
sion is made of property names, functions, and numbers. These may be
connected by +, -, *, and /, with * and / taking precedence. Again, paren-
theses may be used to alter the grouping to any number of levels.

Example:

LENGTH GR LONG * (LAT + EXP(LAT) - 7.3) /6

Property Names

Cross File Reference

Normally property names used in a Boolean primary are from the 'for
file‘. In FABLE there are four ways to reference properties in files other
than the 'for file'. These cross file references may be used in place of

property names in Boolean primaries:

Another File. Using a file name and a property name causes the
Boolean to be evaluated against each object in the other file.

FOR AIRFIELD . IF LENGTH EQ CITY LAT, PRINT LENGTH.
Here, each LENGTH is checked against each LAT in the CITY File.

Another Object in the 'For File'. To refer to another object in the

'for file', use the object name and the property name.

FOR AIRFIELD . IF ALT = LOGAN ALT, PRINT LAT, LONG.

9

An Object in Another File. To refer to an object in another file, use

the file name, the object name, and a property.

FOR AIRFIELD . IF ALT GR CITY BOSTON LAT, PRINT ALT.

An Indirect Object in Another File. When object names of another

file are the values of a property (the indirect object) use the other file name,
the indirect object in parentheses, and a property name in the other file to
refer to data from the selected object. This is called indirect object cross
file reference.

CITY (CITY) POPU

AIRFIELD (ALT) CITY
Indirect object cross file reference may be compounded any number of times.

CITY (AIRFIELD (ALT) CITY) POPU

CITY (AIRFIELD LOGAN CITY) POPU

Ambiguous Property Names

ADAM allows files with ambiguous property and repeating group names.
Ambiguous property names must be qualified by enough repeating group names
to resolve the ambiguity. Unambiguous names may also be qualified for ease
of reading.

RUNWAY NAME

LIGHTS NAME

RUNWAY LIGHTS COLOR

COLOR

RUNWAY COLOR

Properties in Named Repeating Groups

To deal with only certain repetitions in a named repeating group, qualify
the properties in those repetitions by the group name and the repetition name

or names.
10

RUNWAY 33L, 4R LENGTH
RUNWAY 33L, 4R LIGHTS APPROACH COLOR

Complex Boolean Primaries

Null, Else, Until

NULL and a property name (logical or numeric) in parentheses is a
Boolean primary which is true when the property is deleted.

NULL (ALT)
ELSE is a Boolean primary that is always true. The output of a query may
be limited by ending the Boolean with UNTIL and an integer.

FOR AIRFIELD . ELSE UNTIL 4, PRINT ALT.
This query prints only the first four ALT's. UNTIL counts the number of
repetitions or objects that qualify and stops output when the count is exceeded,

although the querying goes unhindered to completion.

Double Boolean Primaries

Two relations may be connected by AND or OR with a single left-
hand operand.

LAT LS 40 AND GR 10

Compound Boolean Primaries

The operands on either side of a relation may be compound. Multiple
operands separated by commas and ALSO and grouped by parentheses are

permitted. A comma means OR, and ALSO means AND.

11

CITY EQ BOSTON, HARTFORD, NEW YORK
LAT ALSO LONG GR 7 AND LS 13

Boolean primaries that are compound on both sides are equivalent to
a series of Boolean primaries that are compound on the left only, using the
right-hand operands and separated by the right-hand operators.

LAT, LONG EQ 7 ALSO 3
is equivalent to

LAT, LONG EQ 7 AND LAT, LONG EQ 3.

Any and All

Ordinarily, in FABLE queries, the Boolean must be satisfied completely
within the same repetition. Sometimes it is desirable to see if one repetition
satisfies one condition and another repetition satisfies a different condition
(ANY), or to see if all repetitions satisfy the same condition (ALL). (See
Looping in File Processing for further discussion.)

ANY LENGTH GR 10000 AND ANY LENGTH LS 7000

ALL (LENGTH GR 10000 AND WIDTH GR 100)

ANY and ALL also work with cross file reference.

ANY (LAT EQ CITY POPU) AND ANY LONG EQ CITY POPU*2

Action Phrases

Position in Query

Action phrases alter files and operate routines. An action phrase may
appear after a Boolean primary or in place of a Boolean primary and the
phrase is equivalent to ELSE followed by the phrase. Several action phrases
may be joined by commas.

FOR AIRFIELD . IF COLOR EQ GREEN CHANGE COLOR TO RED OR
DELETE REPETITION RUNWAY.

12

FOR AIRFIELD . IF (COLOR EQ RED OR NUMBER EQ 3) CHANGE
COLOR TO GREEN.

Operation of Action Phrases

An action phrase is performed whenever the Boolean primary preceding
it is evaluated true. FABLE evaluates as few Boolean primaries as possible
in determining the truth of a Boolean expression. When one Boolean primary
in a series connected by AND's is evaluated false, the rest are not evaluated
and the whole series is false. When one Boolean primary in a series con-
nected by OR's is evaluated true, the rest are not evaluated and the whole

series is true.

Types of Action Phrases

Change. A property may be changed to NULL (which deletes it), a
value, the value of another property of the same type, or an arithmetic
expression where appropriate. Raw properties may be changed to the
values of other raw properties only. More than one change may be specified,
where each is separated from the next by a comma and CHANGE is
not repeated,

CHANGE COLOR TO GREEN, ALT TO NULL

CHANGE LAT TO LAT +7, LONG TO CITY BOSTON LONG.

ADD Repetition. Repetitions may be added to groups by phrases such as

ADD REPETITION RUNWAY (NAME = GEORGE, LENGTH = 7,
WIDTH = DOW RUNWAY 4R WIDTH)

The repetition is always added following the last repetition in the group.
More repetitions may be added, each separated by two commas, and a repeti-

tion may be added within a repetition.

ADD REPETITION RUNWAY (NAME = GEORGE,, NAME = MIKE,
LIGHTS (COLOR = GREEN))

13

Delete Repetition or Group. Repetitions or groups may be deleted by
DELETE REPETITION or DELETE GROUP followed by the group name with

repetition names if desired.
DELETE REPETITION RUNWAY 4R, 33L
DELETE GROUP RUNWAY LIGHTS.

Delete Object. This will delete the current object.

Add Object. The ADD OBJECT phrase is similar to ADD REPETI-
TION. The object is added to the end of the file.

FOR AIRFIELD . ADD OBJECT OBJECT NAME = CITY
OBJECT NAME, LAT = 7, RUNWAY (NAME = GEORGE,,
NAME = MIKE)

There are four restrictions on the ADD OBJECT alter phrase:

(1) There may be no output part in the statement.

(2) There may be no other kinds of action phrases, except DO routine.

(3) No property may be fetched from the file to which data is
being added.

(4) If object name is set to a property value, the property must use

the object roll of its file.

Do Routine. A routine may be operated by DO and a routine name -
DO routcall, in the syntax — and its parameters.

DO F(ALT).

Cross File ALTER

While querying one file it is possible to alter objects in another file
by action phrases. At the end of the 'for' part of the statement add ALTER,
a file name (called the alter file), and either an object name or an indirect

object name. (See An Indirect Object in Another File, p, 10,)

14

FOR AIRFIELD ALTER CITY BOSTON.

FOR AIRFIELD ALTER CITY (CITY).
The values of the alter file are changed and used for the output file;
i.e., properties and repetitions that are changed, added, or deleted are
in the alter file, and the proplist or ALL in the output part of the statement
refers to the alter file. All other property names in the Boolean are assumed
to be in the 'for file' unless explicitly specified as another file.
For example:

FOR AIRFIELD ALTER CITY (CITY). IF ANY (LENGTH GR CITY
(CITY)LAT)

CHANGE LAT TO CITY (CITY) LAT + LAT,
PRINT LAT, 'OLD LAT' = LAT - AIRFIELD LAT.

LAT's marked with an * underneath are in the City (Alter) file. Other
LAT's are in the Airfield (‘for') file. This query illustrates the places where
cross file reference must be made and where the file of a property reference

will be inferred.

The cross file ALTER phrase for the add object action names only
the file.
FOR AIRFIELD ALTER CITY.

OUTPUT PART OF FILE PROCESSING STATEMENTS IN DETAIL

Titles and Formats

Formats and titles may be specified by FORMAT and a format name,
and TITLE followed by the title enclosed in primes.
DISPLAY FORMAT F1 TITLE 'THIS IS A TITLE' ALT , COLOR.

15

Repeating Groups

In the property list, the group name may be placed before the properties
in a group and must be so placed if there is ambiguity.

LAT, ALT, RUNWAY NAME, LENGTH, LIGHTS COLOR.

LAT, ALT, LIGHTS COLOR.
If only the group name is specified, all properties from the group will be

put into the output file.

New Properties

A new property may be introduced into the output file by naming the
new property enclosed in primes and following it by an equals sign and then
an arithmetic expression or a property name,
ALT, 'SUM' = LAT + LONG + 7, 'POP' = CITY BOSTON POPU.
New properties in groups must have OF and the group name after the property
name and they must follow either the group name or a property in the group.
RUNWAY 'AREA' OF RUNWAY = LENGTH*WIDTH.
LENGTH, 'AREA' OF RUNWAY = LENGTH*WIDTH.

Instead of the property list, one may write ALL, which will transfer
a complete object into the new file if the Boolean is true for the object, or
for some repetition in the object, or if it is true for any other reason, The
object gets transferred every time the Boolean is true. If the object is
being altered by action phrases in the Boolean, the object in the output file
will reflect the values of the object the last time the complete Boolean

was true,

16

Null Output Files

The output file is produced even though there are no objects that satisfy
the Boolean and hence no data in the output file. This makes an easy way to
build an empty file with almost any structure desired.

FOR AIRFIELD LOGAN. NOT ELSE. SAVE 'X' = ¢, 'Y' = 0,
RUNWAY 'Z' OF RUNWAY = CITY OBJECT NAME. NAME NEW,

LOOPING IN FILE PROCESSING STATEMENTS

Loops

In evaluating a query, FABLE steps through the files, groups, and
objects in nested loops. First, each is opened in the order of appearance
in the query. Then, the Boolean is evaluated using the values in the currently
open objects and repetitions. If the Boolean is true, the properties named in
the output part of the query are transferred to the output file. Then, true or
false, the innermost loop is stepped and the process is repeated until all the

loops are completely stepped through.

In FABLE, ANY, ALL, ADD REPETITION, ADD OBJECT, and the
output part are local looping phrases (LLP's). When the evaluation of a
Boolean comes to an LLP, a set of nested loops is set up for those files,
objects, and groups mentioned within the LLP. Then, the loops are stepped
just as in the main Boolean. In an ANY phrase, the stepping stops after the
first true instance, and the ANY phrase is true. If the ANY phrase is com-

pletely stepped through without any true instance, it is false.

In an ALL phrase it is just the opposite: The stepping stops after the
first false instance, and the ALL phrase is false. If the ALL phrase is com-

pletely stepped through without a false instance, the ALL phrase is true.

17

Global Rule

Not all files, objects, and groups mentioned in a local looping phrase
(LLP) are stepped through at that point; because of this, they are called
global to the LLP. A file, object, or group is global to an LLP if it is
mentioned to the left of the LLP and is outside of all LLP's which do not
contain the LLP in question.

Files, objects, and groups previously mentioned to the left carry into
ANY's and ALL's; but a file, object, or group that is not global to an ANY or
ALL does not carry beyond the end of it.

For example:

FOR X. X ANY(Y) X ANY (X ANY(Z)Y)Y.
an object, file, or group is global to the ANY containing Z, if it is mentioned
at a point marked by an X, and it is not global if it is mentioned at a place
marked by Y. An example of the usefulness of the global rule is

FOR AIRFIELD. IF RUNWAY LENGTH GR 1000

AND ANY(LENGTH EQ CITY LAT) AND ANY (WIDTH EQ CITY LONG),

PRINT LAT, LONG, RUNWAY.
Here, RUNWAY is global to both ANY's, and each ANY refers to the same
runway. The effect of the query is to find runways whose length is equal to
some CITY LAT and whose WIDTH is equal to some CITY LONG. IF RUNWAY
LENGTH GR 1000 were not there, the effect would be to find airfields with one
runway equal to some CITY LAT and another — or the same runway - equal to

some CITY LONG.
For Clauses

When it is necessary to mention a file, object, or group, and the use
of a Boolean primary is inconvenient, 'for' clauses may be used: FOR is

followed by one or more files, a file and objects, indirect objects, objects in
18

the 'for file' or groups in the 'for file' (see forcl in the syntax in Appendix I).
The objects and files may be followed by groups.

FOR CITY, CITY BOSTON, CITY(CITY), DOW RUNWAY, REMY LIGHT,

LOGAN RUNWAY LIGHT, RUNWAY.

'For' clauses may appear before ANY's and ALL's and before Boolean
primaries. The 'for' clause is used to cause looping when there is no mention

of the file, object, or group in the Boolean or to cause a name to
become global,

FOR AIRFIELD, FOR RUNWAY. ANY (LENGTH EQ CITY LAT) AND
ANY (WIDTH EQ CITY LONG), PRINT ALL.

TALLYING WITH FABLE STATEMENTS

General Description

FABLE contains a type of statement that permits a tally on one or two
values which may be logical type property values or arithmetic expressions.
If a value is arithmetic, ranges for the tally must be specified. For logical
properties, the first 25 unique values found in the file data being tallied
are used as ranges. If two values are used to tally, a two-dimensional
matrix is produced with a 'tally value' for each combination of the two

range specifications.

The tally values may be counts (an increment of one for each time a
particular tally range is found) or else the user may specify an arithmetic
expression by which the appropriate tally value is incremented. In the

latter case, a total is obtained by tally range.

Examples:
FOR CITY. TALLY FOR STATE. TYPE TALLY.

will count the instances of the first 25 states found in the CITY file.

19

FOR CITY. TALLY FOR STATE. IF STATE EQ MASS, NEW YORK,
MAINE, PRINT FORMAT TALLY TALLY.

will count the number of cities in the states of Mass., New York, and Maine,

FOR CITY. TALLY FOR STATE AND POPU/1000, LS 10, 20, 30.
TYPE FORMAT TALLY TALLY.

will tally POPU in ten thousands up to 30, 000 for each of the first 25 states
encountered in the data.

Typical output might be:

10 20 30
MASS 5 lf 15
CALIF 3 6 12

KANSAS 1 3 7

The message
FOR CITY. TALLY FOR STATE. PRINT FORMAT TALLY TALLY POPU.

will sum the population values by state for the first 25 states.

Detailed Discussion

The tally statement (as defined in the syntax in Appendix I) consists of
five parts:

for

tally

Boolean and/or action

output

tally increment
The 'for' phrase initially selects the file and, optionally, the objects from

which the logical or numeric property values will be fetched.

20

The "Boolean'" phrase, if used, will further qualify and select objects
and property values for tallying. Actions may also be named within this
phrase. Note that the Boolean phrase must be used if selection is desired
for logical value tallies, since value qualification is not allowed within the

tally phrase itself.

The tally phrase defines the arithmetic expression or logical property
to be tallied. If a two-way tally is desired, the phrase will be compounded,
i.e., the tally definitions will be joined by the literal 'AND'. The syntax
requires that each arithmetic expression tally be followed by a range speci-
fication of the form:

a relation and a list of ranges, e.g.,

EQ 10, 20, 30
or

a relation, a limitx, an increment, and a limity, e.g.,

LS 10$10$30
In the latter specification, the tally routine uses the increment to compute
a list of ranges from limitX to limity. The maximum allowable number of
ranges in either specification is 25. Any list of ranges exceeding this number

will be truncated at 25, and, consequently, those ranges will be lost.

Only one relation (EQ, LS, GR, GQ, or LQ) per specification is allowed
and, therefore, applies to each range in the list. The ranges are sorted in
descending order if the relation is GR or GQ and in ascending order if the
relation is LS or LQ. Tests are applied in those orders and the first test

results equal to true (if any) determines the tally range of a value.

The output phrase directs the tally output file to be typed, displayed,
printed, or saved. The file may be named, in which case, it is entered in

the system file roll and available for additional processing. An appropriate

21

output format (TALLY) may be requested and, although optional, is more
desirable for printing a tally file than the standard ADAM output format.

The ''tally increment' option allows the user to tally for each quali-
fication by any valid arithmetic expression. If an arithmetic expression

is not present, the implied increment is 1.

The TALLY syntax is illustrated in Appendix I.

USING FABLE TO EXAMINE OR MODIFY ROLLS

Specifying A Roll

A roll may be modified or its contents may be output by using FABLE
statements in which the user specifies the roll. The syntax for identifying
a roll is slightly different in each type of statement but allows for the types

of specification discussed in this subsection.
By Name

Some rolls have names; if the user knows the name, it may be
specified, e. g.,
PRINT ELEMENT NAMES OF COLOR.

By Property

A user may specify the roll used by a particular property by specify-
ing the file name and property name, e.g.,
PRINT LOGICAL VALUES OF AIRFIELD ALT.

FOR AIRFIELD. ADD VALUE KENNEDY TO ALT.

Property and Object Rolls

Property and object rolls do not have individual names and, therefore,

must be identified by naming the file and indicating PROPERTY or OBJECT.

22

The property roll contains the names and descriptions of properties. The
object roll contains names and locations of entries.
Examples:

PRINT PROPERTY NAMES OF AIRFIELD.,

ADD SYNONYM BOS FOR OBJECT NAME CITY BOSTON.

Retrieving Contents of a Roll

FABLE allows a user to retrieve the names in a roll. These may be
typed, displayed, etc., on any specified output device. The format of the
output is not variable. All of the names including synonyms are printed from
the specified roll with the corresponding principal value (PV) for each name.
If the name is a prefix it will be indicated. It is important to realize that
a query of the form

PRINT LOGICAL VALUES OF AIRFIELD ALT.
uses the 'AIRFIELD ALT' to identify the roll and print the names in it, and
if that roll is also used for another property, its values will be printed as
well. When the roll is used by only one property, the names in the roll con-

stitute a list of the unique values of the property.

In addition to the property names, a FABLE user may retrieve addi-
tional information about the properties in a file with a message of the form:
PRINT PROPERTY ROLL CONTENTS OF FN.
The names and PV's of the properties and the type of each property are
printed in a format which shows the file structure by indenting the properties

within a repeating group.

To retrieve other values from a roll, roll dumping routines exist that

may be executed by using FABLE (e.g., RDMP).

23

Modifying A Roll

New names may be added to a roll which is associated with a property
of logical type, e.g.,

FOR CITY . ADD VALUES ALASKA, HAWAII TO STATE.
Such additions are necessary in order to make those names legal values that
may then be referred to in queries, e.g.,

FOR CITY. IF STATE EQ ALASKA, PRINT ALL.
cannot be translated unless ALASKA is in the roll associated with STATE.

Another form of modification or rolls that is possible through FABLE
is the addition and removal of synonyms. Synonyms are additional names
associated with one element in a roll. By adding synonyms, the user may
reference a logical value, a property name, an object name, etc., by more

than one name.

For example,

ADD SYNONYM BOS FOR OBJECT NAME CITY BOSTON.
may then be followed by queries such as

FOR CITY BOS. PRINT POPU.
or

FOR CITY BOSTON. PRINT POPU.

A third form of roll modification involves renaming elements of a roll,
Renaming means replacing the original name with a new name, i.e., re-
placing the name corresponding to a value in the file data with a new name.
This has many uses, For example, a new file may be created from the
contents of the AIRFIELD file and given the name AF. Then, a FABLE mes-
sage may be used to delete the AIRFIELD file and rename AF as AIRFIELD,

In that way the structure of the AIRFIELD file can be modified through FABLE.

24

Another use of RENAME is to change an object name. The usual query
FOR AIRFIELD IDLEWILD . CHANGE OBJECT NAME TO JFK.
will not work because OBJECT NAME is file protected. However,

RENAME OBJECT AIRFIELD IDLEWILD AS JFK.
will accomplish the change and will also make all references to IDLEWILD
in other logical property values, e.g., ALT, also use JFK instead of
IDLEWILD. This change is made in the roll and no modification of file data

is necessary.

If RENAME is used to change a logical value, e.g.,

RENAME LOGICAL VALUE GREEN OF AIRFIELD RUNWAY LIGHTS
TO BLUE.

all values in the file that had the value GREEN in the roll used by RUNWAY
LIGHTS will automatically be changed to BLUE without modification of the
file data.

OPERATING ROUTINES WITH FABLE STATEMENTS

Requirements for Routines Which May Be Operated through FABLE Statements

A routine may be operated within a FABLE statement provided it is
stored as an entry in the routine file and its name and/or entry point names
are listed in the associated ROUT and COMP rolls. The RUE routine should
be used to automatically update these rolls and the routine file, A routine
must be compiled with the necessary information about its name and/or entry
point names and also a description of its parameters, if any. DAMSEL rou-
tines should use DAMSEL statements that contain this information. For other

routines, macros exist to generate the routine description in the proper format.

25

FABLE will accept routines whose input parameters are any of the
following types:

REAL, INTEGER, ROLL and STRING.
These types are described more completely in Section IV. Briefly, the
REAL and INTEGER types are for numeric values, the ROLL type is
for values from a specified roll, and the STRING type is for a string

of characters,

References to Routines in Fable

Notation

The syntax of a reference to a routine is shown in the syntactic phrase

'routcall' (see Appendix I). The following points should be noted.

If a routine has no input parameters it must be written as RT ().
If a routine has input parameters, the number of input values specified
must be less than or equal to the number of inputs the routine expects. No

output parameters are specified in the 'routcall’.

If the parameter type is REAL or integer, the input value may be an
'ae'. If it is a ROLL-type parameter it may be 'scpn'* or RN. If RN is
used, the value is a name in the specified roll. If 'scpn' is used, it may be
a logical type property that uses the roll specified in the input parameter
description; or, if the PV of the specified roll is zero, it may be a logical
property using any roll. In addition, an 'scpn' may be another 'routcall’.
If the type is STRING the value is expressed as RV and hence must be

enclosed in primes. The following are examples of parameters:

REAL: 1.2 LAT AIRFIELD(ALT)LAT LAT*100 + 50
INTEGER: 100 5*POPU

*See the FABLE syntax in Appendix I for scpn, ae, RN and RV definitions.

26

ROLL: RED LLOGAN are examples of RN
ALT AIRFIELD ALT are examples of scpn

STRING: 'THIS IS A TEST"

Unconditional Routine Operation

The simplest FABLE statement to execute a routine has the
following syntax:

DO routcall.
No reference is made to a file. Values of input parameters may be 'ae',
provided the arithmetic expression does not contain any references to file

data. For ROLL type parameters 'scpn' may not be used, but RN is legal.

For example:
DO REPCO (CITY, #)
is permissable because CITY is a RN in the roll of file names (FILES ROLL).
However,
DO FCN(CITY STATE).
where CITY is a file and STATE is a logical property and the input to FCN
is ROLL type, is not legal because CITY STATE is syntactically an 'scpn'.

Note that the referenced routine should not have any output parameters.

A second method of unconditional execution of a routine is the FABLE
statement of the form:

for boolecl.
where the 'boolcl' consists of a 'routcall’, e.g.,

FOR CITY. DO FCN(POPU).

The routine FCN will be operated once per entry in the CITY file and

will be given the value of POPU for each entry.

27

In this form of statement the routine may have any of the legal syntactic
forms for its parameters. The routine is executed once for every instance
of data in entries specified by the 'for' phrase and any repetitions referenced
by the parameters. For example, in a CITY file with one entry per city and
a repeating group called SCHOOLS containing NUMBER OF PUPILS, the
following query

FOR CITY. DO FCN (NUMBER OF PUPILS).
would operate FCN for every entry and every repetition of SCHOOLS in each
entry. In this case, as in the first, the referenced routine may not have

declared outputs.

Conditional Routine Operation

Among the legal actions which may be associated with a Boolean term
is the phrase:

DO routcall
where routcall is defined as a routine name and its parameters. This is
shown as a form of 'altfz' in the syntax of FABLE in Appendix I. The
routine parameters may be any legal form. The routine is executed when-
ever the preceding Boolean term is true. Inputs to the routine that are file

data will come from the qualifying entry and/or repetition.

For example,
FOR CITY. IF POPU GR 10000 DO FCN(POPU).

The routine may not have output parameters.

Routines in Arithmetic Expressions

A routine may be used as an operand in an arithmetic expression
wherever such expressions are legal in FABLE. The only restriction on
the routine is that it must have one output which will be treated as a floating

point number.

28

For example,
FOR CITY. CHANGE POPU TO FCN(POPU).
FOR CITY. IF POPU GR FCN(POPU) CHANGE POPU TO 4.

Routines with Logical Output

The syntactic phrase 'scpn' may be a 'routcall', i.e., a routine call.
In this case, the routine must have an output which is a PV stored as an
integer. Examples of the use of a routine with logical output are the following:
FOR AIRFIELD. IF ALT EQ F(CITY) CHANGE ALT TO NULL.
FOR AIRFIELD. CHANGE ALT TO F(CITY).

SORTING A FILE

Using FABLE, it is possible to sort a file so that it is ordered on a
maximum of 20 property values within the file. For a single SORT, the
values may be for prime level properties; i.e., each property has one value
per entry, or may be for properties in one group. The reordered file may
be the original file or a new file with a user-specified name. Entries are
reordered on prime level properties. Sorting on property values within a

repeating group reorders the repetitions within each entry.

The SORT capability is available in two types of FABLE statements,
the file processing statement which can retrieve and modify as well as sort,
and a simple SORT statement. In the first case, the output file is sorted
before it is saved or output. In the second case, the file, or a list of entries
if the sort is in a group, to be sorted is specified. In either case, the proper-
ties are named and an ordering (ascending or descending) is specified for

each. If no ordering is specified, ascending order is assumed.

29

For alphabetical sorts, the collating sequence is:
ascending ee——-
blank + $ = * (/) . ; ,A...Zf...9-

e Jecending
Any other character is collated as a /. Null values are last in the sort
sequence of both alphabetic and numeric values. For numeric values,
ascending order is the order of increasing numerical value, starting with

the largest negative number and ending with the largest positive number,

If more than one property is specified as a sort key, ordering is
performed on the first property-ordering specified, and within the ordered
set all those having the same values are ordered on the second property-

ordering pair, etc.

Examples:
FOR CITY IF POPU GR 10000, PRINT POPU. SORT ON POPU
This sorts the entries in the output file in increasing order of POPU before

the file is printed.

SORT CITY ON STATE ASCEN, POPU DESCN.
This sorts the CITY file by state and for all cities in each state by population.
In this case the CITY file itself is reordered. Due to the implementation of
SORT in the ADAM system, a new object roll is created for the CITY file and
the old roll is deleted. For this reason any logical properties which used the
object roll of the original file cannot be referenced, e.g., CITY in the
AIRFIELD file,

SORT AIRFIELD RUNWAY LIGHTS ON INTENSITY DESCN, COLOR.
NAME AIRSORT.

30

This will sort the LIGHTS group in descending order by intensity and lights
with the same intensity in ascending alphabetical order by COLOR. The
AIRFIELD file will be unmodified. All sorting will be done in a new file
called AIRSORT.

31

SECTION I

FILE GENERATION LANGUAGE AND PROCEDURES

The ADAM file generation package generates ADAM data files on disk.
The files and the associated property and object rolls can be saved on tape

for later restoration within the system.

An ADAM file is a collecpion of information about a similar set of
entities, called objects. The various pieces of information which pertain
to an object are called properties. The set of all property values for an
object is called an entry. The data falls into two general classes of property
types: fixed length and variable length. Fixed length property types have
floating-point, integer, and decimal values. Variable length property types,
using as much space as is necessary in that particular object, are logical
valued and raw valued. A repeating group, a property without any value, is
a collection of properties which may be any of the types mentioned above,
including other repeating groups. A repeating group may have an arbitrary
number of repetitions, i.e., sets of values comprising one value for each

group property.

Associated with each file, but physically separated from it, are two
rolls, a property roll and an object roll, which serve as a dictionary-directory

for the file.

An ADAM file can be generated by using the Initial File Generation
Language (IFGL), the only 'built-in' capability for file generation from card
or tape input data. File generation may also be accomplished by using
FABLE, the retrieval language in ADAM, provided the input data is either

supplied in the message or is available in an existing ADAM file.

32

Theoretically, a third method of generating files is available. In
this case, the user must define his own file generation procedures in
DAMSEL, SMAC, or a new language by using available system routines
as building blocks.

IFGL is described in the following subsections.

GENERAL CHARACTERISTICS

File generation input consists of specifications and, optionally, file
data. The specifications name and describe the properties of the ADAM
file being generated and may describe the location and length of the corres-
ponding values in the file input data; also described is the processing

necessary to convert these values to internal representations in the

ADAM file.

Source of Input

A file can be generated with or without input data. A null data file
generation creates a complete property roll with no values in the file and

a null object roll.

The input data can be on cards or tape. The card input data is in
card code. The tape input data is assumed to be in 6-bit BCD code where
the physical record length must not exceed 3189 characters (6-bit bytes).
The logical record length, analogous to card length, must be less than or

equal to the physical record length and must not exceed 1056 characters.
Data Fields

Data fields in the input may be variable or fixed length. The data in

each entry must be grouped together and any field in that entry must be a

33

contiguous string. Input fields may be ignored. Individual properties
may be described without any input data.

Names

Names may be prefixed (i.e., consist of more than one word) with

the exception of file, roll, and routine names. Each name may have a

number of synonyms, any one of which may be specified as the output
PRINT name,

Data Modifications

Conversion

By using a conversion routine, the input data may be, and generally
is, modified before being stored in the file. The system contains some
conversion routines, or optionally, a user-defined conversion routine can

be used.
Scale Factor

For numeric properties (floating-point, integer, and decimal), the
property value may be multiplied with a scale factor, before it is stored

in the file.

File Classification

A security classification may be assigned for the file. If the classi-
fication is other than UNCLASSIFIED, the classification is printed
automatically at the top and bottom center of every page of the output.

Logical Rolls

Logical values are optionally added to one of the following rolls:

34

(a) object roll of this file
(b) object or property roll of another file

(c) a new or existing roll.
Protection

A property value may be protected thereby preventing any future change

of that value except by special coding.
Format

The user may define his own output format for the file generation

printout. Otherwise, the standard ADAM output format will be used.

Legality Checks

Numeric Range Check

For numeric properties (floating-point, integer, and decimal) a range
check is made, following the optional multiplication of a scale factor,
according to the user's specification in the property description. If the

value is outside the range, it is rejected.

Sequence Check

A sequence counter may be set and compared with a data field. If the

comparison fails, file generation is ended.

Optional Roll Additions

When the value for a logical property is not found in an existing roll,
the 'ADDITIONS ALLOWED' option determines whether or not to add the
value to the roll. Thus, if the '"ADDITIONS ALLOWED!' option is not speci-

fied, the value is rejected if it is not in the roll.

35

Conversion

Illegal characters may be detected by the conversion routine.

INITIAL FILE GENERATION LANGUAGE DECK

Preparation

In the Initial File Generation Language (IFGL), the file description
may be punched on cards or typed on-line. On-line message input is gen-
erally not feasible, since the description tends to be too long; therefore,

card specifications are usually used.

A file description in IFGL must be a separate input message. It is
punched or typed in any desired format, with any number of sentcnces per
card or line, in columns 1 through 80, with the exception that the first

character of the message must be nonblank and in column 1 of the first card.

Previously defined string substitutions may be used in the

file description.

The file data itself may be on cards or tape in any desired format.
The restrictions of the tape input data are given above in the paragraph
entitled Source of Input. The card file input data is terminated by B, EOF
punched in columns 1-5 of the last card. The tape file input data is termi-
nated by an end-of-file mark on the tape. The tape input data is located on

a tape whose IOD is assumed to be 7.
Notation

In this account of the Initial File Generation Language, we have used
a system of notation similar to the one used to describe COBOL. It's salient

features are outlined below.

36

Key Words

Key words are all upper case words that are underlined. These words

must be used precisely as specified.

Example: BEGIN OBJECT

Optional Words

Optional words are all upper case words that are not underlined.

They may be used to improve readability, or may be omitted for succinctness.
Example: CONVERT USING

User-Defined Phrases

User-defined phrases are all lower case words or groups of words that
represent values to be supplied by the user, following procedures delineated

elsewhere in the document.
Example: GENERATE FILE., name.
Braces

When two or more phrases are enclosed within braces, a choice must

be made from the entries enclosed therein.

Example: FLOATING
INTEGER
DECIMAIL
Brackets

Information enclosed within square brackets is optional. It may be

included or omitted, as required.

Example: [PROTECT]

37

Punctuation

All punctuation must be used precisely as specified.

FILE DESCRIPTION

The language description that follows is a series of statements in the
notation described in the previous subsection, augmented by explanatory
paragraphs where the language is not self-describing. Appendix II gives an
example of file generation description.

SXntax

A file description consists of the series of statements outlined below:

GENERATE FILE, name,

[NULL DATA,]
[(PRINCIPAL VALUE

) 1_P_Y. g number,:l

ESTIMATED LENGTH number PAGE [S] ,]

[(NO PRINT
| PRINT FORMAT name* } ,]

—

SCR
%Iélj_g, number CHARACTERS }
[, CLASSIFICATION name] . **
BEGIN OBJECT [,number PERCENT SLOP]

[set sequence counter command]

[position. . .[position]]

[property description. . .| property description]]
END OBJECT. [position...[position]]

* Must be an element in the format roll.
**Must be an element in the classification roll.

38

Discussion
Name

name

prefixed name [(PRINT)] ...[,prefixed name [(PRINT)]]

The names of the file, properties, and new rolls (if any) are entered
as elements of their corresponding rolls. The first prefixed name is con-
sidered the principal name. All subsequent prefixed names are synonyms.
If one synonym is followed by the notation (PRINT), that synonym will be used
in any output referencing the data denoted by this set of names. If (PRINT)
is not specified, the principal name is used. Any of the names may be used

interchangeably in FABLE and DAMSEL,

The following restrictions apply to the choice of names for properties:

(1) The following names may not be used for properties:

OBJECT SIZE DEAD SPACE DELETE BIT
VAR. DATA START OVERRIDE BIT LENGTH OF S10OP

(2) The following names must be used if the values are in the data
base for an object:

OBJECT NAME PRINCIPAL CLASSIFICATION
ALTERNATE CLASSIFICATION

These are all LOGICAL type properties and their property

descriptions should specify the use of OBJECT or CLASSI-

FICATION rolls., NAME is used only for names of repeti-

tions in a repeating group.

(3) Properties may have the same name if they are either
members of different repeating groups or one is a non-
repeating-group property and the others are members of
different repeating groups.

39

The following restrictions apply to the choice of names for the new files:

(1) The name may not be ROUT.
(2) The name may not be the same as any other file name in the
data base,

(3) The name may not be prefixed.

The following restrictions apply to the choice of names for new rolls:
(1) The name may not be the same as any existing named roll.

(2) The name may not be prefixed.

Prefixed Name

prefixed name

simple name...[simple name]

Any number of spaces may be used between simple names, but they will

be reduced to one space before the name is added to the roll.
Simple Name

A simple name is a string of arbitrary length formed from the characters

Ay, By Cnm By By Ly onaegids
Null Data

The phrase NULL DATA implies no file data. Neither the B, EOF termi-

nation card nor the end-of-file tape mark is required.

Principal Value

The principal value or PV number must be an available (but not deleted)
PV and not greater than 127. If two files are saved during separate file gener-
ation tasks, the same PV may be assigned to both by FILDEF (the initiate file
routine). Later, if both files are to be restored during the same run and if

they have the same PV, the allocation for the first file restored is released

40

and therefore destroyed by DABS, the data base save and restore program. By

assigning a unique PV to each file, this can be avoided.
Number
number
[{#}] integer [. integer] [([{+} Jinteger)]

The positive or negative integer in parentheses is the power of 10 by

which the mixed decimal is to be multiplied.

Integer

An integer is a string of arbitrary length formed from the characters

g: 1: 2’ LICICNE) 9.

Estimated Length Number

The ESTIMATED LENGTH number is an estimate, in pages (arcs), of
the space that the new file will occupy. In large file generations, the estimate
must be made to avoid an internal table overflow. The number of estimated
arcs is a function of the amount and character, i.e., property types, of the
input data. There is no penalty for overestimation provided the estimate plus

the system startup requirement* is less than the disk IOD request.

No Print

The NO PRINT option suppresses printing of the generated file and is
used when the file generation is very long, thus avoiding excessive data print-
out. If a print specification is not given, the standard ADAM output print

format is used.

*Includes any disk used by the data base restoration program.

41

SCR and TAPE

SCR implies that the file input data is from the extended system eard
reader. The logieal reeord length is assumed to be 80 charaeters. If the file

input data is from tape, the 'number CHARACTERS' is the number of 6-bit

BCD eharaeters per logical reecord on the input data tape.

Pereent Slop

Slop is the empty space between fixed and variable data, per entry,
and allows the addition of variable data to an entry after file generation with-
out inereasing the size of the entry and thereby eausing noncontiguous disk

alloecation for the expanded entry. If the PERCENT SLOP of the object is not

specified, a standard pereentage (10) will be used.
Positions

The first set of 'positions' is a sequenee of instruetions to the file gener-
ation program that positions an imaginary input pointer to the first objeet of

the data base. It is an initial position and exeeuted only onee.

The second set of 'positions' is a sequenee of instruetions that positions
the imaginary input pointer to the start of the next object. It is executed after

data for an objeet has been processed. See the paragraph entitled Position, below.

Set Sequence Counter Command

The 'set sequence counter command' is used to set the sequence counter
to eheek the validity of the input data and is discussed in the paragraph entitled

Set Sequence Counter Command, below.

42

PROPERTY DESCRIPTION

Each of the following qualifies as a property description:

logical property description
floating-point property description
numeric property description

raw property description

repeating group property description

sequence check

Logical Property Description

LOGICAL properties have their values listed in a roll. It is possible
to use an existing roll, or to create a new roll, that is shared by several
logical properties of the file being generated.

Syntax

LOGICAL, OBJECT NAME,

field description [c ONVERT USING {C°de conversion “ame}J

entry point name

USE OBJECT ROLL

or:
LOGICAL, name,
NULL DATA

field description [CONVERT USING {

code conversion name.}
entry point name,

[PROTECT.]

43

OBJECT ROLL,
NEW ROLL name.

USE ROLL name [(ADDITIONS ALLOWED)].

OBJECT ROLL OF name FILE.

[PROPERTY ROLL OF name FILE.

Discussion

If no data for the property 'OBJECT NAME' is to be read in, the property

must not be described,

The phrase '"NULL DATA' is used when values for the property described
are not part of the input data base, and will be added to the file later.

The optional 'CONVERT USING' phrase specifies the form of the data in
the input data base, and the type of code conversion to be used when moving

the data into the new ADAM file (see CONVERT DESCRIPTION).

The '"PROTECT!' verb is used to specify file protection for this proper-
ty. The value of a protected property cannot be changed after the file has

been generated.

The 'USE’ " "ROLL' phrase names the roll that will be used to relate the
logical values to their alphanumeric representation. If two or more logical
properties are to use the same roll, the 'NEW ROLL' phrase should be used
in the description of the first of these properties, and the 'ROLL..' phrase

in the others.

'ADDITIONS ALLOWED! is used to indicate that values for this property

in the data base will be automatically added to the specified roll if not already
there. If the 'ADDITIONS ALLOWED' option is not chosen and a value for the

44

property is not in the roll, the following message will be sent to the user and

processing will continue:
VALUE NOT IN NAMED ROLL, NO VALUES STORED,

For 'field description' see paragraph of that title, below.

Example

LOGICAL, OBJECT NAME,
LENGTH IS 20 COLUMNS.
CONVERT USING CAA,
USE OBJECT ROLL,.

LOGICAL, CITY,

SPACE 10 COLUMNS,

LENGTH IS VARIABLE, SCAN UP TO "**',
PROTECT.

USE NEW ROLL LOCATION.

Numeric Property Description

Syntax

/

S FLOATING ?

INTEGER , , Name,
2 DECIMAL
NULL DATA,
field description | CONVERT USING {°°de e name'}] }
e entry point name,.

[PROTECT.]

[CONVERT IN entry point name.] [CONVERT OUT entry point name.]
[MAX number,] [MIN number,]

[SCALE FACTOR number,] integer DIGIT [S].

45

Discussion

The '"CONVERT IN entry point name' (if any) specifies a user-defined
routine to convert values of the numeric property expressed in FABLE from
their external form to their internal representation in the file, An output
conversion routine (if any) is used to convert the internal representation of
the value to an output form in response to a FABLE query, and is specified

in the '"CONVERT OUT entry point name' phrase,

The "MIN' and "MAX' phrases specify the expected minimum and maxi-

mum values for this property after it has been multiplied by the scale factor
(if any). If a value being stored is not within the specified range, the following

message will be sent to the user and processing will continue:
DATA OUT OF RANGE, VALUE NOT STORED, PROPERTY NAME IS name,

If a 'SCALE FACTOR' has been specified, the numeric quantity in the

input data base will be multiplied by this factor before it is stored in the new

file. The scale factor is not limited to powers of ten.

The 'integer DIGIT[S]' phrase specifies the maximum number of signifi-
cant decimal digits which will be used to create values for this property and
determines how much space should be provided for the property in the new<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>